Pigeonring: A Principle for Faster Thresholded Similarity Search

نویسندگان

  • Jianbin Qin
  • Chuan Xiao
چکیده

The pigeonhole principle states that if n items are contained in m boxes, then at least one box has no more than n/m items. It is utilized to solve many data management problems, especially for thresholded similarity searches. Despite many pigeonhole principle-based solutions proposed in the last few decades, the condition stated by the principle is weak. It only constrains the number of items in a single box. By organizing the boxes in a ring, we propose a new principle, called the pigeonring principle, which constrains the number of items in multiple boxes and yields stronger conditions. To utilize the new principle, we focus on problems defined in the form of identifying data objects whose similarities or distances to the query is constrained by a threshold. Many solutions to these problems utilize the pigeonhole principle to find candidates that satisfy a filtering condition. By the new principle, stronger filtering conditions can be established. We show that the pigeonhole principle is a special case of the new principle. This suggests that all the solutions based on the pigeonhole principle are possible to be accelerated by the new principle. A universal filtering framework is introduced to encompass the solutions to these problems based on the new principle. Besides, we discuss how to quickly find candidates specified by the new principle. The implementation requires only minor modifications on top of existing pigeonhole principle-based algorithms. Experimental results on real datasets demonstrate the applicability of the new principle as well as the superior performance of the algorithms based on the new principle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Effects of thresholding on correlation-based image similarity metrics

The computation of image similarity is important for a wide range of analyses in neuroimaging, from decoding to meta-analysis. In many cases the images being compared have empty voxels, but the effects of such empty voxels on image similarity metrics are poorly understood. We present a detailed investigation of the influence of different degrees of image thresholding on the outcome of pairwise ...

متن کامل

ارزیابی خودکار جویش‌گرهای ویدئویی حوزه وب فارسی بر اساس تجمیع آرا

Today, the growth of the internet and its high influence in individuals’ life have caused many users to solve their daily needs by search engines and hence, the search engines need to be modified and continuously improved. Therefore, evaluating search engines to determine their performance is of paramount importance. In Iran, as well as other countries, extensive researches are being performed ...

متن کامل

Faster Sequential Search with a Two-Pass Dynamic-Time-Warping Lower Bound

The Dynamic Time Warping (DTW) is a popular similarity measure between time series. The DTW fails to satisfy the triangle inequality and its computation requires quadratic time. Hence, to find closest neighbors quickly, we use bounding techniques. We can avoid most DTW computations with an inexpensive lower bound (LB Keogh). We compare LB Keogh with a tighter lower bound (LB Improved). We find ...

متن کامل

Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice

We propose a thresholded ensemble model for ordinal regression problems. The model consists of a weighted ensemble of confidence functions and an ordered vector of thresholds. We derive novel largemargin bounds of common error functions, such as the classification error and the absolute error. In addition to some existing algorithms, we also study two novel boosting approaches for constructing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018